Energy Efficient Near-threshold Chip Multi-processing

Bo Zhai, Ronald G. Dreslinski, David Blaauw, Trevor Mudge, Dennis Sylvester
{bzhai, rdreslin, blaauw, tnm, dennis}@eecs.umich.edu, University of Michigan, Ann Arbor, Ml

ABSTRACT

Subthreshold circuit design has become a popular approach for
building energy efficient digital circuits. One drawback is perfor-
mance degradation due to the exponentially reduced driving current.
This had limited subthreshold circuits to relatively low performance
applications such as sensor networks. To retain the excellent energy
efficiency while reducing performance loss, we propose to apply
subthreshold and near-threshold techniques to chip multi-processors.
We show that an architecture where several slower cores are clus-
tered together with a shared faster L1 cache is optimal for energy
efficiency, because processor cores and memory operate best at dif-
ferent supply and threshold voltages. In particular, SPLASH?2 bench-
marks show about a 53% energy improvement over the traditional
CMP approach (about 70% over a single core machine).

Categories and Subject Descriptors

C.1.4 [Parallel Architectures]: Mobile Processors

General Terms Design, Reliability, Performance
Keywords energy efficient, CMP, near-threshold, subthreshold

1 Introduction

Due to its high energy efficiency subthreshold design has been
recently proposed for use in low performance applications. For
example, Zhai et al. [1] proposed a low-end sensor network proces-
sor and Wang and Chandrakasan [2] proposed subthreshold use for
an FFT engine. However, the drawback of subthreshold design is
that the increased energy efficiency comes at the cost of performance
loss. Thus previous papers have only targeted low end applications.
Our intention is to use the energy efficiency of subthreshold designs
to target parallelizable embedded applications requiring higher per-
formance, but where battery life is important.

Previous work by Zhai et al. [3] and Calhoun [4] has shown that for
a CMOS digital circuit there exists an energy optimal supply voltage
(V,nin) below which energy consumption increases because of expo-
nentially increased propagation delay and leakage energy. V,,;, usu-
ally occurs in the subthreshold region. However, these papers did not
address how to choose the threshold voltage (V};) to further improve
energy savings. In this work we show that varying V,;, changes the
energy optimal voltage and that greater savings can be achieved by
controlling the 7, properly.

Zhai et al. [1] shows that, due to the different activity factors and
leakage rates for memory cells and logic, the V,,;, of the processor

and memory are usually different. As a result, operating the entire
system under a single ¥V, leads to sub-optimal energy efficiency.

Therefore we propose using a chip design that has two separate ¥,/
V', domains for the core and memory.

However only changing the V;, does not solve the issue of perfor-
mance loss from aggressive voltage scaling. So we propose to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

ISLPED 07, August 27-29, 2007, Portland, Oregon, USA.

Copyright 2007 ACM 978-1-59593-709-4/07/0008...$5.00.

32

employ multiple cores in the subthreshold or the near-threshold
regime. We explore separate control of V,; and ¥, for the core and
the memory, where memory is allowed to operate at speeds both
slower and faster than the core it is attached to. In particular, we cre-
ate a cluster that has several slower cores connected to the same
faster cache.

Clusters have advantages compared to the traditional CMP
approach. Applications that have high communication to computa-
tion ratios can share data with other cores in the cluster without the
coherence overhead of communicating over the bus that connects the
different L1’s. However, the cores are now contending for the same
cache space, which may result in effectively smaller cache sizes due
to conflict and capacity misses generated by the other cores within
the cluster. L1 sharing also requires a bus between the cores and the
L1. More cores within a cluster increases the size and capacitance of
this bus. We investigated all the major factors that could affect the
system energy efficiency, such as L1 cache size, the cluster size,
total number of clusters and the selection of V,,; and V;, within a
cluster. Architectural simulation together with circuit-level modeling
shows that for most of the SPLASH2 [5] benchmarks the energy
optimal point is 2 cores in a cluster. This configuration provides
about a 53% increase in energy efficiency over the traditional CMP
design.

The paper is organized as follows: Section 2 explains the advantage
of the subthreshold design and the impact of threshold voltage selec-
tion on energy efficiency. We then introduce the proposed architec-
ture in Section 3 and provide a theoretical analysis. Section 4 and
Section 5 detail the energy modeling of a complete system and the
architectural simulation results of the SPLASH2 benchmarks.
Finally, Section 6 presents concluding remarks. All technology num-
bers are from an industrial 0.13um CMOS technology.

2 Energy Efficient Subthreshold Design

Zhai et al. [3] identified the supply voltage at which the minimum
energy is achieved, V,,;,. They also showed that minimum energy

consumption at that voltage, E,;,, is independent of the threshold
voltage, Vy, if V,,;, is below V. In other words, we can increase the
speed of a subthreshold circuit by reducing ¥;;, while maintaining the
same energy consumption. However, V,,;, varies with the activity

rate of the circuit. Less active components such as an SRAM/cache
usually have a higher V,,;, than a core. When the V,,,;, moves close

to Vi, Epin and V., shift higher.

To analyze this interaction, we write out the energy per switching for
a circuit block as (short-circuit power is lumped into switching
power as described in [6]):

CVya
Vs 2 (BQD)
on
where E,,;,;, E e and Ej,,;, are the total, active, and leakage energy
consumption respectively; C is the load capacitance; and 7, is the

on-current of the driving gate. Among the two components of energy
consumption, E, ., always scales quadratically with V; and is inde-

pendent of V,;,. What may change with V};, is the leakage energy
component Ej, ;. If Vy, is high enough, E},,; holds constant regard-
less of ¥, because 7, has the same scaling characteristics with 7,
as Ij,4, and both V7, terms cancel out:

2
Etata[= Eacl+Eleak = CV(M + []eak'

50- CORE 30+
454
—~ 254
3 2
£ 40 5
2 °
[Y Vth=0.30
3 35 $ 201
3 __-Vth=0.30 2
o N c
£ 8)
25 Vth=0.35~0.5
\" Vth=0.4~0.5
20 10 T T T T
02 03 o2 o5 02 0.3 04 05
vdd(v) Vdd(v)
(a) (b)
Figure 1. Energy-V;; for core and SRAM with different Vs
_Vih
2 mVy Vaa
E up = CV o+ 1 e -V, —
total, sub dd s0 dd 7[/(/(/, Vih (EQ 2)

mV.
T
[50 e

Therefore V,,;, stays unchanged. However, as V,;, moves closer to
V,nin» the leakage energy component Ej, ;. increases because the cir-
cuit moves out of the subthreshold regime and into the near V', tran-
sient region. In this region [, increases more than the delay
reduces. In the energy equation EQ2, this implies that the V;, terms
can no longer be cancelled out. If we assume an a-power law [7] for
near-threshold on-current, E,,,,; can be written as:

Veh
= OVt Iy-e o Via- Lﬁ
]UIIO (Vdd_ Ven)

We simulated an inverter chain by applying a pulse input using
SPICE and fitted models for leakage current and delay with ¥, and
Vi Vi, is varied by changing the Vy,, parameter in the SPICE

model. Then we applied the fitted model for a commercial processor
core [8] and plotted the energy consumption per clock cycle with V;;

for different Vs in Figure 1(a). The total energy shows a minimum
as expected. More importantly, the energy consumption is insensi-
tive to Vy, values that are larger than 0.35V. In this region, V,,,;, stays
constant, which we refer to as V,,;,, the inherent optimal energy
voltage. In this case V,,;,y is ~0.25V. When V7, drops below 0.35V,
the overall energy consumption increases considerably. As a result,
V in shifts with the change in V. Interestingly V,,,;, first decreases a
bit and then it rises. SRAM/cache usually has a higher V,,;, than the

processor core due to the lower activity rate and higher relative leak-
age power. For comparison we have plotted the energy consumption
with ¥, under different Vs for a SRAM in Figure 1(b). It is evident

that SRAM has a higher V,,;,,/V,,.in0- It also exhibits dependency on
V4, like the processor core.

(EQ3)

EIU tal, super

It follows that operating the processor core and the memory at their
individual optimal V;; and V;, will result in the best overall energy

efficiency. As noted above, the speed depends exponentially on V,

and we could gain “free” performance without additional energy
consumption if V,,;, is lower than V;,. Assuming a nominal speed of

233MHz at a supply voltage of 1.2V and a threshold voltage of 0.4V,
we solved for the optimal V,,;,, and V7, at different performance tar-
gets and plotted the results in Figure 2. Memory, the leakier compo-
nent, runs at a higher V,;, and ¥, than the core in order to balance
the active and leakage energy. For both components, the optimal V,

increases almost linearly with the log of the decreasing target fre-
quency. However the optimal V', reduces dramatically at higher per-

formance targets and then stabilizes near 10MHz. For the best

33

0.50

124 ~.
- —— coreVdd /Fo.as
Seel -----memVdd i
1.0 ----coreVth /[Lo.40
- ys. ----memVth
0.5 mgr\n sub-Vth . i/ Loss
— hs S~ /
S ~. . ’ s
3 06 ~.. (' ;. L0.30 5
S 0.6 3. AR
> < -5 L0.25 =
core sub-Vth | N TN .
044 __l-- = \
................ ‘}0.20
..
0.2 *-10.15
1™ 10M 100M
target frequency/Hz

Figure 2. V,,/V;, assignment for different frequency targets

performance-energy trade-off, we would like to operate them
slightly above threshold voltage to avoid the performance degrada-
tion of scaling deeper into the subthreshold region.

Although it is straightforward to build a system based on the optimi-
zation results in Figure 2, the flexibility of tuning V;, and V; sepa-
rately for the core and memory provides even more savings when
combined with a novel multi-processing (MP) structure.

3 Proposed Near-threshold Architecture

3.1 New Memory Architecture

Traditional computer design is usually limited by the SRAM/cache
speed leading to traditional designs in which the caches run at the
same speed or slower speeds than the core. However, the picture
changes in the subthreshold domain because we can now take advan-
tage of the ¥, and ¥V, knobs, as discussed in Section 2, and have the
memory module operate at a speed faster than the core. In the sub-
threshold regime, a 100mV boost in V;; from 300mV to 400mV can
bring almost 10X performance speed-up according to silicon mea-
surements in [1]. We can also tune the V;, similarly to adjust speed
by applying body bias or choosing from the foundry preset Vs.

However, this is not feasible in the superthreshold regime because
driving current depends on V ,/V,;, following the a-power law [7].
One issue with subthreshold design is the increased sensitivity to
variation and previous work [10] has shown that it can be success-
fully mitigated using proper circuit design techniques.

We further investigated the use of multi-processing techniques in
conjunction with voltage scaling techniques to reduce energy con-
sumption. The traditional way that multi-processing is implemented
is illustrated in Figure 3 (a) where there is one cache per core. In this
paper we propose a new micro-architecture shown in Figure 3 (b)
where there are several cores sharing one local cache forming a

2nd level
memory
2nd level cluster; cluster,
memory
cluster
cache/SRAM cache/SRAM
(fmvddmvlho) (foyvddmvmo)
| | -
Core Core converter * *
(foyvddoyvlho) (fo,vddmvmo)
coreq coreg
(fcore;vddcorenvlhcore) (fcorenvddcoresvmcore)
() (b)

Figure 3. Traditional and proposed MP micro-architecture

“cluster”. The local cache serves k cores by running & times faster
than each individual core. We achieve this by assigning proper V

and ¥, to the cores and the SRAM/caches. To simplify the problem,

we assume that all the cores are running at the same speed and same
V4qand Vy,. But the V,;,/V,, between the cores and the SRAM/cache

could be different. The clusters are connected to the same next level
memory, which could be an on-chip cache or an off-chip DRAM.

Because the cores and the memories could potentially operate at dif-
ferent supply voltages, level converters will be needed in between
the cores and memories. Subthreshold level converters have been
shown feasible in [1]. Considering the V,; space we are exploring,
the delay of the level converter is minimal compared the critical
delay of the core and the memory. In addition, since we are now con-
necting multiple cores to a single L1, the tightly coupled nature of
the L1 will be removed and a bus will be needed to connect the cores
and the cache. This bus will become larger and expend more energy
as the number of cores within the cluster is increased.

3.2 Theoretical Analysis and Projection

In order to obtain some quick insights on how traditional and pro-
posed micro-architectures scale differently, we first apply theoretical
models before turning to detailed architectural simulation. When the
system scales from single core to multi-core processing, the total
number of clock cycles across all the cores increases due to the nec-
essary application synchronization between the cores (explicit soft-
ware synchronization instructions and barriers) and cache coherence
traffic (implicit hardware execution overhead). [9] has shown a scal-
ing model for multi-processing for high end processors. Although in
this work we are not targeting high end applications, the basic scal-
ing theories remain the same. [9]’s model is shown below:

HX+)/
e (EQ4)
x+y
(1) P+

where n,, is the number of the processors, P; is the percentage of the

serial portion of code, and x and y are application dependent parame-
ters describing non-linear speed-up due to various overheads. The
maximum speed-up is bounded by the non-parallelizable portion P;
of the application. This scaling model applies to the traditional CMP
as shown in Figure 3 (a). Note that in this work we assume a snoop-
type/shared-bus cache coherence protocol.

Speedup =

However, we cannot directly use EQ4 for the proposed new cluster
mode configuration in Figure 3 (b) because having multiple cores in
a cluster reduces the coherence traffic. Therefore, we have proposed
the following model:
x+y
H/Ilﬁﬂl /f
X+ y

kP +
(1]”]0,”71)-}75‘*'1 k PS !
where £ is the cluster size, or the number of cores present in a cluster,
and n,,,,,, is the number of caches or clusters. The first term is similar

to what is used in EQ4 to capture the cache coherence overhead and
speed up. This speed up is related to the computation to communica-
tion ratio of the application. The second term describes the speed-up
that occurs from sharing cache locally among several cores. This
sharing reduces the coherence traffic between first level and second
level memory because modifications made by cores within a cluster
are visible to the other cores within that cluster. If some other core in
the cluster needs the data, there is a higher chance that the block
resides in the local cluster memory. However both terms are still lim-
ited by the serial part, Py, of the application.

3.2.1 Memory Area Scaling Model

Previous work [10] has shown that current sensitivity to subthresh-
old variation increases dramatically with reduced V,; Previous

work [2][11][12][13][14] has illustrated successful SRAM designs

Speedup =

(EQ5)

normalized energy

Figure 4. Theoretical scaling results

that operate in subthreshold regime. However, all these works result
in an area overhead. Part of the reason for the area overhead is that
larger channel area helps suppress random dopant fluctuations
(RDF), the dominating factor in the subthreshold regime [15].

In order to factor in the design area overhead of voltage scalability
for the SRAM, we carried out Monte Carlo simulations and deter-
mined the amount of up-sizing needed for the memory cells under a
certain yield constraint. An exponential function is then fitted to the
results and used in the rest of the paper.

3.2.2 Problem Formulation and Theoretical Results

Given a certain task deadline or a execution time for a certain appli-
cation, we want to find the optimal combination of 7.4, Vg cores
Vincores Pmems Vad.mem @04 Vi mem to achieve the minimum total
energy consumption. The optimization is formulated as follows:

Minimize energy consumption

Ecare(ncore" Vdd, core Vt/l, cnre) + EIIIG[II(HII]EIIF Vdd, menr Vth, mem)
(EQ 6)
s. t.
speedup- f,, . = freq,,.

where n_,,, is equal to n,,,,, *k, and freq,,, is the target frequency. We
assume a 16kB unified L1 cache for each core in the system similar
to what is used in a commercial processor [8].

The energy consumption is modeled as the sum of switching energy
and leakage energy from both the memories and the cores. After
applying EQS5 and the fitted circuit-level power models from SPICE
simulation, we can numerically solve the optimization problem in
EQ6. The results are presented in Figure 4 where we swept the clus-
ter size (k) and the number of clusters (#,,,,,), both from 1 to 8. The

energy consumption is normalized to the single-core single-memory
case. The energy increases considerably as the cluster size increases
beyond 4 because the memory has to run at a much higher voltage
and/or lower V', and significantly raises the energy per access to the
memory. In addition, energy savings are improved with more than
one cluster but saturates with large cluster numbers due to the syn-
chronization overhead and cache size. Combining these two factors,
there exists a global optimal at 3 clusters with 2 cores per cluster.
The parameters used are (x+))=0.90 and P=0.05.

Although these results are based on hypothetical application and the
theoretical speed-up model as in EQS, it does provide us with the
insights into cluster mode organization. We will further verify these
observations with detailed power modeling and micro-architectural
simulation in Section 5 on actual applications.

4 Detailed Power Model for Simulation

In order to properly attain energy numbers from our architectural
simulation, we need to determine a power model for all the compo-

Table 1. Baseline architecture

Component Value
CPU 86mW@(233MHz,1.2V) in-order functional model
Unified D/I L1 64kB, 2-way, block size=64B
L2 2MB 8-way, latency=10

nents in the system. The core energy estimations are based upon the
processor core frequency and power consumption numbers from
ARM946 in [8]. The same fitted model as in Section 2 is used to
capture the V;; and 7y, dependency of delay and leakage. The cache

power/energy numbers of different sizes were extrapolated from a
memory compiler in 0.13um technology. The baseline machine
detail is listed in Table 1. Off-chip access to DRAM is power-hungry
because of the high capacitance in the chip package and off-chip
wires. Therefore, a energy-oriented design needs to have a big
enough L2 cache so that it can shield off the majority of the conflict-
ing misses from the L1 cache from accessing the off-chip memory.
For our analysis we have chosen a 2MB on-chip L2 cache operating
at nominal voltage (1.2V). As aforementioned, designing a large L2
for voltage scalability with high yield implies significant area and
energy overhead. Also since the L2 has a much lower activity rate
than the L1, we assume L2 cache utilizes low standby leakage tech-
niques such as drowsy cache [17]. In order to include bus switching
energy, we have extracted the physical parameters from a 0.13um
technology. Worst case coupling capacitance and repeater insertion
have been taken into account. The length of the CPU-L1 buses
scales linearly with cluster size and the length of the L1-L2 buses
linearly with cluster number.

5 Architectural Simulation and Results

In order to analyze the ramifications of the proposed architectures in
energy efficient processor design, we must quantify the system per-
formance energy trade-off using architectural simulations. We per-
formed the simulation using the M5 Simulator [16] to determine the
energy consumption for different configurations. The analysis was
done using the SPLASH2 parallel benchmark suite [5] and all the
benchmarks were run to completion. Although SPLASH2 bench-
marks are considered high performance scientific applications it was
the only parallel benchmarks we had running in the simulator. The
trends that we observed in the SPLASH benchmarks will still hold
for other parallel applications, but may vary based on the amount of
parallelism present and the communication to computation ratio of
the application. In order to support the proposed clustered configura-
tion, we have modified M5 to include the capability of simulating
clustering. During the cluster mode, we assume that the L1’s are &
times faster than the core, where £ is the number of cores per cluster
and that each of the cores is clocked on a different phase of the
caches clock to provide a round-robin access pattern and avoid an
arbiter on the bus between the cores and the L1.

The relative latency of the components need to be scaled so as to
capture the voltage scaling effect. For instance, when we have a
multi-core system, each core and L1 inside the system can be
accordingly slowed down compared to the single-core baseline
machine, since our constraint is to keep the runtime constant. In
architectural simulation, this is equivalent to having a faster L2 and
DRAM.

5.1 Optimal L1 Size

It is known that the size of the L1 affects the system performance in
terms of average access latency, but more importantly we found that
it also affects the energy efficiency of the system. In order to under-
stand how the choice of L1 size impacted the energy performance of
a system, we first performed an analysis on a supply voltage scaled
uni-processor system. We varied L1 sizes and optimized the energy
consumption for each size by tuning the ¥, and ¥, of each compo-

35

nent. Figure 5 shows the energy consumption for Cholesky. We
found similar trends for all the SPLASH2 benchmarks, although the
optimal cache size varied across the applications. The energy con-
sumption is broken down into processor core, L1, and L2. As L1 size
increases from 4kB to 128kB, the overall accesses to the L1 remain
constant because of the same instruction stream and data pattern
from the processor core. However, L1 energy consumption increases
with larger L1 sizes because the energy per access of the L1 requires
more power due to larger array size and larger capacitance. The
other implication of various L1 sizes is the L1 performance. The L1
miss rate reduces significantly with larger L1s, which also results in
a lower number of access to the L2 due to less L1 misses and write-
backs. Therefore the L2 energy reduces with larger L1 sizes. The
core’s energy consumption also reduces with larger L1 sizes because
of reduced cycles per instruction (CPI) from less total number of
clock cycles that results from a higher L1 hit rate (lower average
access latency to the memory system).

Figure 6 shows the optimal V,;;s and V,;s of the core and the L1 with
different L1 sizes for Cholesky. The total number of CPU cycles
reduces with larger L1 sizes, implying relaxed frequency require-
ments under the same execution time constraint for the core. There-
fore the core V,; reduces. However this improvement is not large
enough to change the core V. As a comparison, the L1 V,
increases and the amount of change is much higher than that of the
core because larger caches inherently run slower. In order for the L1
to keep up with the core the ¥, has to be raised. At the same time a
larger cache is leakier, resulting in a higher V', in order to maintain a
good switching energy and leakage energy balance.

5.2 Optimal Cluster Size

To study the impact of multi-processing and clustering on the energy
consumption, we set up our analysis as follows: the number of clus-
ters is varied from 1 to 64, the number cores per cluster is varied
from 1 to 8 and L1 size per cluster is varied from 4kB to 128kB. We
did a complete analysis of the 240 different configurations across the
complete design space for 7 SPLASH benchmarks. The other
SPLASH benchmarks were also simulated but did not provide suffi-
cient configuration combinations (due to the nature of the bench-
marks).

0.4- —u—Total
\ —o—Core
—s—11
0.3- " ——— '
= 0.2 optimal
o V.24
Y S —
i
0.1-
0.0+—
"4 8 16 32 64 128
L1 Size (kB)
Figure 5. Optimal energy with one core and one L1 (Cholesky)
12 030 12 —=—L1Vdd 020
—=n—core Vdd o Livth 0.25
—o—core Vth 10.25 1.0 -
1.0 s . <
s 020 5 5 0203
3 — = X S
308 o ==l S T 0.8 045
0.6 0.10 0.6 0.10
4 8 16 32 64 128 2 4 8 16 32 64 128
L1 size (kB) L1 size (kB)
(@) (b)

Figure 6. Optimal V;; and V, settings of the core (a) and
L1 (b) with different L1 sizes for Cholesky

I total ener I cpuCycles
0.006 v 6x10’{ mm L1accesses
5x10’
§ 0.004 4x10”
g * 3x10"
S 0.002 2x10”
1x10
0.000 0
14.64 2232 41.16 1.4.64 2.2, 32 4.1.16
(a)
0.008 I L1MissRate [N L2accesses
2 0.006 # 1.2x10°
s 2
& 0.004 g 8.0x10"
£ ©
T 0.002 4.0x10*
0.000 0.0

14.64 2232 4.1.16 1.4.64 2232 4.1.16

Notation: (cluster 1-4) (cores per cluster).(L1 size per cluster in KB)
Figure 7. Three configurations comparison for LU

In order to fully understand the benefit of running in cluster mode
Figure 3(b) vs. traditional connection Figure 3(a) we specifically
compare three cases in which the overall die size is held constant and
present the results in Figure 7. Figure 7(a) shows the energy con-
sumption of the three candidates for LU in the SPLASH2 benchmark
suite. The best configuration for energy efficiency is 2 cores per
cluster, with 2 clusters. This can be explained with Figure 7(b-d). At
4 clusters with 1 core per cluster, a traditional CMP, the number of
CPU cycles is larger than both of the clustering cases. This occurs
because the average memory access latency is long because the L1
miss rate is high do to the fact that shared memory accesses are
forced to miss in the local L1 cache and snoop neighboring L1’s to
get the data. As the number of cores in a cluster is increased to 2
some of the shared memory of other cores is visible within the clus-
ter’s L1 to both cores without having to access another L1. This sig-
nificantly reduces the average memory access time and results in a
reduced number of CPU cycles. Meanwhile the larger shared cache
within the cluster results in a higher hit rate and reduced accesses to
the L2. Reducing the number of access to the L2 reduces the energy
consumed by the L2 as was shown in Section 5.1.

As we scale to 4 cores per cluster, the L1 miss rate is reduced even
further, but the energy per access of the L1 and the energy to operate
the large bus to connect the cores within the cluster begin to out-
weigh the gains we see in reduced L2 traffic. Also there is not much
reduction in CPU cycles. This happens because the first set of clus-
tering encapsulated most of the memory sharing and synchronization
that took place in this application.

For this study it is important to note that we chose three points at
which the die size was the same, in the later studies we will present

1 core
cholesk

1L1 croEsty . L2

0.4 I L1
I Core

03 4 cores

S 4L1"

E 2 cores/cluster

2 3 clust

] 0.24 clusters 2 cores/cluster

g 3 clusters
0.1 l
0.0+

baseline traditional V,,scaling v &V, scaling

. . Vas Scaling wi cluster wj cluster
Figure 8. Various scaling methods comparison (Cholesky)

36

Table 2. Optimal V,/V, for various scaling methods (Cholesky)

core L1
ViV 27A% ViV ViV
baseline 1.2 0.4 1.2 0.4
traditional CMP 0.782 0.4 0.782 0.4
clustering w/' Vg, 0.665 0.4 0.845 0.4
clusteringw/ Vyy & Vy, | 0.37 0.189 0.64 0.264

the global optimal configuration without regard to die size. We
wanted to show in this study that given a fixed die size, clustering is
the optimal choice for this benchmark.

5.3 Various Energy Saving Modes

In this section, we explore the entire design space and analyze the
impact of using the ¥}, to further improve performance. We again
use the same 240 configurations per benchmark as in Section 5.2.
Three different scaling approaches are evaluated: 1) traditional V,
scaling using MP while maintaining one core per L1 cache (Figure 3
(a)), 2) V4 scaling using MP but with cluster mode configuration
and 3) V,; and ¥y, scaling with cluster mode configuration. The
runtime of all three systems is set to match that of the baseline
machine. The results for Cholesky are presented in Figure 8. Tradi-
tional MP V,; scaling brings us 38.1% savings over the baseline
machine, but clustering cores with V;; scaling results in a 18.9%
improvement over traditional scaling techniques and 49.9%
improvement over the baseline. Finally we show that clustered cores
with both scaled 7, as well as 7, yields a global optimal energy,
and about a 53% percent improvement over using traditional scaling
techniques.

The optimal V,/V;, values for the different techniques are presented
in Table 2. With nominal V', at 0.4V, V,; scaling with traditional MP
finds an optimum with 4 cores and 4 L1 caches at a V,;; of 0.8V.
With clustering, the system finds an optimal with 2 cores per cluster
at 3 clusters. In order to maintain the speed difference between the
L1 and the core, the L1 supply voltage needs to be raised higher and
in turn the core voltage can be dropped. The best clustered machine
using V,;,/V 4, scaling finds its optimum at a lower ¥, and ¥, than
V4-only clustered scaling. Also the L1 cache operates at a higher
V,;, than the core due to the higher leakage, confirming our observa-
tion in Figure 2. The optimal L1 size for all 3 scaling approaches is
64kB for this benchmark. The energy optimal point was chosen
without regard to die size. If given a die size constraint the energy
optimal point can be found within the configurations, out of the 240
explored, that meet that die constraint. Section 5.2 provides an
example of such an analysis where we present three configurations
with the same die size.

Table 3. Optimal configurations for different benchmarks

n, k L1 size core L1 energy

/kB* VadV | Vi/V | VgV | V!V | savings

cho |3 2 64 0.370 |0.189 | 0.640 |0.264 | 70.8%
it 2 2 32 0.415 |0.180 | 0.620 |[0.236 | 72.6%
fmm | 8 2 128 0.310 |0.236 | 0.610 |[0.377 | 79.7%
luc | 3 2 32 0.380 |0.198 | 0.610 [0.292 | 77.8%
lun | 2 2 64 0.425 |0.180 | 0.765 |0.255 | 68.4%
rad |16 1 128 0.285 |0.236 | 0.610 |0.480 | 84.2%
ray |3 2 128 0.405 |0.208 | 0.780 |[0.283 | 65.1%

k: # of cores per cluster n.: # of cluster *L1 size is per cluster
energy savings is relative to baseline uni-processor machine

We ran the same analysis for additional SPLASH2 benchmarks:
Cholesky (cho), FFT, FMM, LU non-contiguous blocks (lun), LU-
contiguous blocks (luc), Radix (rad), and Raytrace (ray). The results
are presented in Table 3. Clustering is optimal for 6 applications with
the optimal cluster size of 2 cores. The key reason is that cluster
mode can enhance the memory efficiency but too many cores shar-
ing one L1 forces the L1 to be much larger and to run a lot faster and
eventually the energy per access to L1 takes over the savings from
traffic to the L2 and from the CPU. Additionally the bus connecting
the cores within the cluster becomes larger and requires more energy
as the cluster size increases.

5.4 Optimality under Different Performance Constraints

In this section we investigated the optimal energy consumption for
Cholesky under different performance requirements using clustering
and optimal V,;,/V, selection. The results are presented in Figure
9(b). Performance on the x-axis refers to the frequency of the base-
line single-core single-L1 machine. With reduced target perfor-
mance, the energy savings increases first because of relaxed
frequency constraints on each core and L1 cache, both of which
operate in the near-threshold regime. Then energy consumption
increases because the cores and L1s begin to scale into subthreshold
regime causing considerable performance loss in comparison to the
power gain. Also the lengthened execution time prolongs the L2
cache leakage energy.

The V,; and Vy;, settings with different performance targets are
shown in Figure 9(a). The ¥, for the L1 slightly reduces from
233MHz to 100MHz due to relaxed frequency. However it holds
around 600mV because lower V,; implies significant up sizing as
described in Section 3. And this area increase from SRAM redesign-
ing nullifies the savings from reduced V,;;. The V};, increases with
lowered performance requirements to balance switching energy and
leakage energy. The cores operate at a significantly lower V;; and
V,;, than the L1s for all of the swept performance range because it is

running at half the speed of the L1. In addition logic gates are more
robust than SRAM and voltage scale without area overhead.

In Figure 9(a) the optimal number of clusters increases from 2 to 3
for targets above 150MHz. This is attributed to the fact that in order
to meet the higher performance constraint we need more computa-
tional power. The increase in the number of clusters, and thus total
cores, requires less energy than voltage scaling the smaller number
of cores to meet the same constraint. Figure 9(a) also shows that the
optimal L1 size changes from 64kB to 128kB for targets below
76MHz because the relative contribution of L2 energy consumption
starts to increase. A larger L1 helps to suppress L2 accesses.
Although the larger L1 incurs more energy per access, the amount of
energy saved from reducing the L2 accesses outweighs any increase
in the L1. For more explanation on this refer to Section 5.1.

2 clusters i 3clusters
2 cores/cluster “*°= ® 2 cores/cluster

0.6 = —a— core Vdd
—=— core Vth
128kB L1 == E‘:rs ddt
0.5 64kBLY
. —o—L1 Vth

near Vth region

Voltage(V)
o
T

100M
100M Target Performance (Hz)
Target Performance (Hz)
(a) (b)
Figure 9. Optimal settings with target performances (Cholesky)

10M

37

Finally, we have highlighted the near V', region on both plots in Fig-

ure 9. Optimal energy consumption is achieved at this voltage
regime and at a frequency of tens of megahertz (~15MHz-50MHz).

6 Conclusions

In this paper we have investigated the optimal threshold voltage
selection for energy efficient subthreshold design. By separately
controlling the supply voltage and the threshold voltage of the core
and the memory, we can achieve better energy efficiency. We have
combined these techniques with a novel multi-processor architecture
where multiple cores share one faster L1 cache in a cluster to further
improve energy savings. We found that for a typical SPLASH2
application the proposed architecture can provide about 70% energy
savings over a uni-processor system and about 53% over conven-
tional multi-processor scaling. The optimal cluster size is 2 cores for
most of the SPLASH?2 benchmarks that we investigated, and the sys-
tem achieves best energy efficiency when operating in the near-
threshold voltage regime.

Acknowledgements

The authors acknowledge the support of NSF, SRC, Intel and the
Gigascale Systems Research Focus Center, one of five research cen-
ters funded under the Focus Center Research Program, a Semicon-
ductor Research Corporation program.

References

[1] B. Zhai, L. Nazhandali, et al., “A 2.60pJ/Inst Subthreshold Sen-
sor Processor for Optimal Energy Efficiency”, IEEE VLSI Tech-
nology and Circuits, 2006

[2] A. Wang, A. Chandrakasan, “A 180mV FFT processor using
subthreshold circuits techniques”, IEEE ISSCC 2004

[3] B. Zhai, D. Blaauw, et al., “Theoretical and practical limits of
dynamic voltage scaling”, DAC 2004

[4] B. Calhoun, A. Chandrakasan, “Characterizing and modeling
minimum energy operation for subthreshold circuits,” ISLPED
2004

[51 S.C. Woo, M. Ohara, et. al. “The SPLASH-2 Programs: Char-
acterization and Methodological Considerations”, ACM ISCA,
1995.

[6] B. Zhai, D. Blaauw, et al., “The Limit of Dynamic Voltage
Scaling and Insomniac Dynamic Voltage Scaling”, [EEE
TVLSI, Nov 2004

[7] T. Sakurai and A. Newton, “Alpha-power law MOSFET model
and its applications to CMOS inverter delay and other formu-
las,” IEEE JSSC, vol. 25, no. 2, pp. 584-594, Apr. 1990.

[8] http://www.arm.com/products/CPUs

[91 R. A. Hankins, T. A. Diep, et al., “Scaling and Characterizing
Database Workloads: Bridging the Gap between Research and
Practice”, [EEE/ACM MICRO 2003.

[10] B. Zhai, S. Hanson, ef al., “Analysis and Mitigation of Variabil-
ity in Subthreshold Design”, IEEE ISLPED, 2005

[11] B. Calhoun and A. Chandrakasan, “A 256kb Sub-threshold
SRAM in 65nm CMOS”, I[EEE ISSCC, 2006

[12] N. Verma, A. Chandrakasan, “A 65nm 8T Sub-Vt SRAM
Employing Sense-Amplifier Redundancy”, IEEE ISSCC, 2007

[13] T-H. Kim, J. Liu, et al., “A High-Density Subthreshold SRAM
with Data-Independent Bitline Leakage and Virtual-Ground
Replica Scheme”, IEEE ISSCC, 2007

[14] B. Zhai, D. Blaauw, et al., “A Sub-200mV 6T SRAM in
0.13um CMOS”, IEEE ISSCC, 2007

[15] M. J. M. Pelgrom, et al., “Matching properties of MOS transis-
tors,” IEEE JSSC, vol. 24, no. 5, pp. 1433-1440, 1989.

[16] N. L. Binkert, R. G. Dreslinski, et al., “The M5 Simulator:
Modeling Networked Systems.”, IEEE Micro, pp. 52-60, 2006

[17] N. S. Kim, K. Flautner, et al. “Single-Vdd and Single-Vt Super-
Drowsy Techniques for Low-Leakage High-Performance
Instruction Caches”, IEEE/ACM ISLPED, 2004.

	Energy Efficient Near-threshold Chip Multi-processing
	Bo Zhai, Ronald G. Dreslinski, David Blaauw, Trevor Mudge, Dennis Sylvester
	ABSTRACT
	1 Introduction
	2 Energy Efficient Subthreshold Design
	(EQ 1)
	(EQ 2)
	Figure 1. Energy-Vdd for core and SRAM with different Vths
	(EQ 3)
	Figure 2. Vdd/Vth assignment for different frequency targets

	3 Proposed Near-threshold Architecture
	3.1 New Memory Architecture
	Figure 3. Traditional and proposed MP micro-architecture

	3.2 Theoretical Analysis and Projection
	(EQ 4)
	(EQ 5)
	3.2.1 Memory Area Scaling Model
	3.2.2 Problem Formulation and Theoretical Results
	(EQ 6)
	Figure 4. Theoretical scaling results

	4 Detailed Power Model for Simulation
	5 Architectural Simulation and Results
	5.1 Optimal L1 Size
	Figure 5. Optimal energy with one core and one L1 (Cholesky)
	Figure 6. Optimal Vdd and Vth settings of the core (a) and L1 (b) with different L1 sizes for Cholesky

	5.2 Optimal Cluster Size
	Figure 7. Three configurations comparison for LU
	Figure 8. Various scaling methods comparison (Cholesky)

	5.3 Various Energy Saving Modes
	5.4 Optimality under Different Performance Constraints
	Figure 9. Optimal settings with target performances (Cholesky)

	6 Conclusions
	Acknowledgements
	References
	[1] B. Zhai, L. Nazhandali, et al., “A 2.60pJ/Inst Subthreshold Sensor Processor for Optimal Energy Efficiency”, IEEE VLSI Technology and Circuits, 2006
	[2] A. Wang, A. Chandrakasan, “A 180mV FFT processor using subthreshold circuits techniques”, IEEE ISSCC 2004
	[3] B. Zhai, D. Blaauw, et al., “Theoretical and practical limits of dynamic voltage scaling”, DAC 2004
	[4] B. Calhoun, A. Chandrakasan, “Characterizing and modeling minimum energy operation for subthreshold circuits,” ISLPED 2004
	[5] S. C. Woo, M. Ohara, et. al. “The SPLASH-2 Programs: Characterization and Methodological Considerations”, ACM ISCA, 1995.
	[6] B. Zhai, D. Blaauw, et al., “The Limit of Dynamic Voltage Scaling and Insomniac Dynamic Voltage Scaling”, IEEE TVLSI, Nov 2004
	[7] T. Sakurai and A. Newton, “Alpha-power law MOSFET model and its applications to CMOS inverter delay and other formulas,” IEEE JSSC, vol. 25, no. 2, pp. 584-594, Apr. 1990.
	[8] http://www.arm.com/products/CPUs
	[9] R. A. Hankins, T. A. Diep, et al., “Scaling and Characterizing Database Workloads: Bridging the Gap between Research and Practice”, IEEE/ACM MICRO 2003.
	[10] B. Zhai, S. Hanson, et al., “Analysis and Mitigation of Variability in Subthreshold Design”, IEEE ISLPED, 2005
	[11] B. Calhoun and A. Chandrakasan, “A 256kb Sub-threshold SRAM in 65nm CMOS”, IEEE ISSCC, 2006
	[12] N. Verma, A. Chandrakasan, “A 65nm 8T Sub-Vt SRAM Employing Sense-Amplifier Redundancy”, IEEE ISSCC, 2007
	[13] T-H. Kim, J. Liu, et al., “A High-Density Subthreshold SRAM with Data-Independent Bitline Leakage and Virtual-Ground Replica Scheme”, IEEE ISSCC, 2007
	[14] B. Zhai, D. Blaauw, et al., “A Sub-200mV 6T SRAM in 0.13um CMOS”, IEEE ISSCC, 2007
	[15] M. J. M. Pelgrom, et al., “Matching properties of MOS transistors,” IEEE JSSC, vol. 24, no. 5, pp. 1433-1440, 1989.
	[16] N. L. Binkert, R. G. Dreslinski, et al., “The M5 Simulator: Modeling Networked Systems.”, IEEE Micro, pp. 52-60, 2006
	[17] N. S. Kim, K. Flautner, et al. “Single-Vdd and Single-Vt Super- Drowsy Techniques for Low-Leakage High-Performance Instruction Caches”, IEEE/ACM ISLPED, 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

